Publications
2025
-
Resch, B., Kolokoussis, P., Hanny, D., Brovelli, M. A., & Kamel Boulos, M. N. (2025). The generative revolution: AI foundation models in geospatial health—applications, challenges and future research. International Journal of Health Geographics, 24(1), 6. Link
-
Schmidt, S., Díaz Fragachan, E., Arifi, D., Hanny, D., & Resch, B. (2025). Assessing the spatial accuracy of geocoding flood-related imagery using Vision Language Models. Spatial Information Research, 33(2), 15. Link
-
Hanny, D., Arifi, D., Knoblauch, S., Resch, B., Lautenbach, S., Zipf, A., & de Aragão Rocha, A. A. (2025). An explainable GeoAI approach for the multimodal analysis of urban human dynamics: A case study for the COVID-19 pandemic in Rio de Janeiro. Computational Urban Science, 5(1), 13. Link
-
Schmidt, S., Friedemann, M., Hanny, D., Resch, B., Riedlinger, T., & Mühlbauer, M. (2025). Enhancing satellite-based emergency mapping: Identifying wildfires through geo-social media analysis. Big Earth Data, 0(0), 1–23. Link
2024
-
Hanny, D., Schmidt, S., & Resch, B. (2024). Active Learning for Identifying Disaster-Related Tweets: A Comparison with Keyword Filtering and Generic Fine-Tuning. In K. Arai (Ed.), Intelligent Systems and Applications (pp. 126–142). Springer Nature Switzerland. Link, Preprint, Slides, Model
-
Hanny, D., & Resch, B. (2024). Multimodal Geo-Information Extraction from Social Media for Supporting Decision-Making in Disaster Management. AGILE: GIScience Series, 5, 1–8. Link, Slides
-
Hanny, D., & Resch, B. (2024). Clustering-Based Joint Topic-Sentiment Modeling of Social Media Data: A Neural Networks Approach. Information, 15(4), Article 4. Link